تمت عملية الاشتراك بنجاح

إغلاق

عذراً، أنت مشترك مسبقاً بالنشرة البريدية

إغلاق
اشترك

الاستمرار بالحساب الحالي

شارك
شارك
سجل الدخول الآن للاستماع الى المقال
تتعثر الكثير من الجهود التي تهدف إلى تطبيق تعلم الآلة بسبب المخاوف من "الصندوق الأسود" – أي الافتقار إلى الشفافية المتعلقة بالسبب وراء قيام النظام بما يقوم به. يرجع هذا أحياناً إلى رغبة الأشخاص في فهم سبب التوصل إلى بعض التنبؤات قبل اتخاذ إجراءات جوهرية من شأنها أن تغير الحياة، كما هو الحال عندما يشير نظام الرؤية الحاسوبية إلى وجود احتمالية بنسبة 95% للإصابة بالسرطان بالاعتماد على صورة أشعة سينية لرئة المريض. يرجع السبب في ذلك في بعض الأحيان إلى حاجة الفرق الفنية إلى تحديد الأخطاء وحلها دون إيقاف النظام بأكمله أو تعطيله. والآن، بعد أن دخل النظام الأوروبي لحماية البيانات العامة (GDPR) حيز النفاذ، يتعين على الشركات التي تتعامل مع بيانات المستهلكين أن توضح كيفية قيام الأنظمة الآلية باتخاذ القرارات، وعلى وجه الخصوص، تلك القرارات التي تؤثر بشكل كبير على حياة الأفراد؛ مثل تخصيص الائتمان، أو تعيين شخص معين في وظيفة ما. ومع أنّ النظام الأوروبي لحماية البيانات العامة (GDPR) لا يطبق إلا في أوروبا، إلا أن الشركات في جميع أنحاء العالم تتوقع حدوث تغييرات مماثلة، وكذلك إعادة النظر في جهود الحوكمة.
إذا قمت بالبحث على الإنترنت، ستجد أن معظم الكتابات حول إمكانية تفسير الخوارزمية تنقسم إلى تيارين متعاكسين. فغالباً ما يقول أنصار سرعة تبني وتطبيق هذه التقنية أن البشر ليسوا أفضل من الآلات في تفسير وتوضيح القرارات التي يتخذونها، ولذا يجب علينا أن نؤجل هذا

مقالك الأول مجاناً، أدخل بريدك الإلكتروني واقرأ.

أو اشترك الآن واستفد من العرض الأقوى بمناسبة اليوم الوطني السعودي.
25% على الاشتراكات السنوية في مجرة.

تنويه: يمكنكم مشاركة أي مقال من هارفارد بزنس ريفيو من خلال نشر رابط المقال أو الفيديو على أي من شبكات التواصل أو إعادة نشر تغريداتنا، لكن لا يمكن نسخ نص المقال نفسه ونشر النص في مكان آخر نظراً لأنه محمي بحقوق الملكية الدولية. إن نسخ نص المقال بدون إذن مسبق يعرض صاحبه للملاحقة القانونية دولياً.

جميع الحقوق محفوظة لشركة هارفارد بزنس ببليشنغ، بوسطن، الولايات المتحدة الاميركية 2022